Biharmonic and Quasi-Biharmonic Slant Surfaces in Lorentzian Complex Space Forms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biharmonic and Quasi-Biharmonic Slant Surfaces in Lorentzian Complex Space Forms

and Applied Analysis 3 2.2. Bitension Field. For smooth maps φ : (Mn, g) → (̃ Mm, ⟨, ⟩), the tension field τ(φ) is a section of the vector bundle φ∗T̃ M defined by τ (φ) = trace∇dφ = n

متن کامل

Biharmonic Hypersurfaces in 4-dimensional Space Forms

We investigate proper biharmonic hypersurfaces with at most three distinct principal curvatures in space forms. We obtain the full classification of proper biharmonic hypersurfaces in 4-dimensional space forms.

متن کامل

1-type and biharmonic frenet curves in lorentzian 3-space*

1-type and biharmonic curves by using laplace operator in lorentzian 3-space arestudied and some theorems and characterizations are given for these curves.

متن کامل

Biharmonic Anti - invariant Submanifolds in Sasakian Space Forms ∗

We obtain some classification results and the stability conditions of nonminimal biharmonic anti-invariant submanifolds in Sasakian space forms. MSC 2000: 53C42 (primary); 53B25 (secondary)

متن کامل

A Comparative Study between Biharmonic Bézier Surfaces and Biharmonic Extremal Surfaces

Given a prescribed boundary of a Bézier surface, we compare the Bézier surfaces generated by two different methods, i.e., the Bézier surface minimising the biharmonic functional and the unique Bézier surface solution of the biharmonic equation with prescribed boundary. Although often the two types of surfaces look visually the same, we show that they are indeed different. In this paper, we prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/412709